30 research outputs found

    Bit-Error and Soft-Error Resilient 7T/14T SRAM with 150-nm FD-SOI Process

    Get PDF
    Background: The aim of this study was to assess the accuracy of stress 99m technetium tetrofosmin myocardial perfusion imaging for the diagnosis of in stent stenosis (ISS). Methods: We studied 72 patients who underwent exercise or dobutamine stress 99m technetium tetrofosmin imaging, 0.9-0.5 years after percutaneous coronary interventions in which stents were deployed. Coronary angiography was performed within 3 months of the stress test. ISS was defined as ≥50% stenosis in a coronary segment with previous stenting. Significant coronary artery disease (CAD) was defined as ≥50% stenosis within or outside the stented coronary segment. Results: The stent was deployed in 1 coronary artery in 52 patients, and in 2 coronary arteries in 20 patients (a total of 92 detected in 42 (58%) patients (51 stents). Reversible perfusion abnormalities were present in 34 of patients

    Comparison of tissue pressure and ablation time between the LeVeen and cool-tip needle methods

    Get PDF
    BACKGROUND: Radio frequency ablation (RFA) has been accepted clinically as a useful local treatment for hepatocellular carcinoma (HCC). However, intrahepatic recurrence after RFA has been reported which might be attributable to increase in intra-tumor pressure during RFA. To reduce the pressure and ablation time, we developed a novel method of RFA, a multi-step method in which a LeVeen needle, an expansion-type electrode, is incrementally and stepwise expanded. We compared the maximal pressure during ablation and the total ablation time among the multi-step method, single-step method (a standard single-step full expansion with a LeVeen needle), and the method with a cool-tip electrode. Finally, we performed a preliminary comparison of the ablation times for these methods in HCC cases. RESULTS: A block of pig liver sealed in a rigid plastic case was used as a model of an HCC tumor with a capsule. The multi-step method with the LeVeen electrode resulted in the lowest pressure as compared with the single-step or cool-tip methods. There was no significant difference in the ablation time between the multi-step and cool-tip ablation methods, although the single-step methods had longer ablation times than the other ablation procedures. In HCC cases, the multi-step method had a significantly shorter ablation time than the single-step or cool-tip methods. CONCLUSION: We demonstrated that the multi-step method was useful to reduce the ablation time and to suppress the increase in pressure. The multi-step method using a LeVeen needle may be a clinically applicable procedure for RFA

    Structural variation in the glycogen synthase kinase 3β and brain‐derived neurotrophic factor genes in Japanese patients with bipolar disorders

    Get PDF
    Background: Lithium is the first‐line drug for the treatment of bipolar disorders (BDs); however, not all patients responded. Glycogen synthase kinase (GSK) 3β and brain‐derived neurotrophic factor (BDNF) play a role in the therapeutic action of lithium. Since structural variations were reported in these genes, it is possible that these genomic variations may be involved in the therapeutic responses to lithium. Method: Fifty patients with BDs and 50 healthy subjects (mean age 55.0 ± 15.0 years; M/F 19/31) participated. We examined structural variation of the GSK3β and BDNF genes by real‐time PCR. We examined the influence of structural variation of these genes on the therapeutic responses to lithium and the occurrence of antidepressant‐emergent affective switch (AEAS). The efficacy of lithium was assessed using the Alda scale, and AEAS was evaluated using Young Mania Rating Scale. Results: Although we examined structural variations within intron II and VII of the GSK3® gene and from the end of exon IV to intron IV and within exon IX of the BDNF gene, no structural variation was found in BDs. Whereas 5 of 50 patients exhibited three copies of the genomic region within exon IV of the BDNF gene, all healthy subjects had two copies. No difference in the therapeutic efficacy of lithium was found between patients with three and two copies. No difference in the occurrence of AEAS was found between the two groups. Conclusion: The amplification of the BDNF gene influenced neither the therapeutic responses to lithium nor the occurrence of AEAS

    A counter-based read circuit tolerant to process variation for low-voltage operating STT-MRAM

    Get PDF
    The capacity of embedded memory on LSIs has kept increasing. It is important to reduce the leakage power of embedded memory for low-power LSIs. In fact, the ITRS predicts that the leakage power in embedded memory will account for 40% of all power consumption by 2024 [1]. A spin transfer torque magneto-resistance random access memory (STT-MRAM) is promising for use as non-volatile memory to reduce the leakage power. It is useful because it can function at low voltages and has a lifetime of over 1016 write cycles [2]. In addition, the STT-MRAM technology has a smaller bit cell than an SRAM. Making the STT-MRAM is suitable for use in high-density products [3–7]. The STT-MRAM uses magnetic tunnel junction (MTJ). The MTJ has two states: a parallel state and an anti-parallel state. These states mean that the magnetization direction of the MTJ’s layers are the same or different. The directions pair determines the MTJ’s magneto- resistance value. The states of MTJ can be changed by the current flowing. The MTJ resistance becomes low in the parallel state and high in the anti-parallel state. The MTJ potentially operates at less than 0.4 V [8]. In other hands, it is difficult to design peripheral circuitry for an STT-MRAM array at such a low voltage. In this paper, we propose a counter-based read circuit that functions at 0.4 V, which is tolerant of process variation and temperature fluctuation

    A 28-nm FD-SOI 8T Dual-Port SRAM for Low-Energy Image Processor With Selective Sourceline Drive Scheme

    Get PDF
    This paper presents a low-energy 64-Kb eight-transistor (8T) one-read/one-write dual-port image memory with a 28-nm fully depleted SOI (FD-SOI) process technology. Our proposed SRAM adopts a selective sourceline drive (SSD) scheme and a consecutive data write technique for improving active energy efficiency at low voltage. The novel SSD scheme controls sourceline voltage and eliminates leakage energy at unselected columns in read operations. We fabricated a 64-Kb 8T dual-port SRAM in the 28-nm FD-SOI process technology. The 8T SRAM cell size is 0.291 × 1.457 μm 2 . The test chip exhibits 0.48-V operation at an access time of 135 ns. The energy minimum point is at a supply voltage of 0.56 V and an access time of 35 ns, where 265.0 fJ/cycle in write operations and 389.6 fJ/cycle in read operations are achieved. These factors are, respectively, 30% and 26% smaller than those of the 8T dual-port SRAM with the conventional scheme

    A 28-nm 484-fJ/writecycle 650-fJ/readcycle 8T Three-Port FD-SOI SRAM for Image Processor

    No full text
    corecore